Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Diabetes Metab Res Rev ; 38(7): e3565, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1925908

ABSTRACT

AIMS: Several reports indicate that diabetes determines an increased mortality risk in patients with coronavirus disease 19 (COVID-19) and a good glycaemic control appears to be associated with more favourable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of COVID-19 related deaths. This disease is indeed characterised by abnormal inflammatory response and vascular dysfunction, leading to the involvement and failure of different systems, including severe acute respiratory distress syndrome, coagulopathy, myocardial damage and renal failure. Inflammation and vascular dysfunction are also well-known features of hyperglycemia and diabetes, making up the ground for a detrimental synergistic combination that could explain the increased mortality observed in hyperglycaemic patients. MATERIALS AND METHODS: In this work, we conduct a narrative review on this intriguing connection. Together with this, we also present the clinical characteristics, outcomes, laboratory and histopathological findings related to this topic of a cohort of nearly 1000 subjects with COVID-19 admitted to a third-level Hospital in Milan. RESULTS: We found an increased mortality in subjects with COVID-19 and diabetes, together with an altered inflammatory profile. CONCLUSIONS: This may support the hypothesis that diabetes and COVID-19 meet at the crossroads of inflammation and vascular dysfunction. (ClinicalTrials.gov NCT04463849 and NCT04382794).


Subject(s)
Blood Coagulation Disorders , COVID-19 , Diabetes Mellitus , COVID-19/complications , Humans , Inflammation , SARS-CoV-2
2.
Diabetes ; 71(7): 1579-1590, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1834217

ABSTRACT

Recent studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may induce metabolic distress, leading to hyperglycemia in patients affected by coronavirus disease 19 (COVID-19). We investigated the potential indirect and direct effects of SARS-CoV-2 on human pancreatic islets in 10 patients who became hyperglycemic after COVID-19. Although there was no evidence of peripheral anti-islet autoimmunity, the serum of these patients displayed toxicity on human pancreatic islets, which could be abrogated by the use of anti-interleukin-1ß (IL-1ß), anti-IL-6, and anti-tumor necrosis factor α, cytokines known to be highly upregulated during COVID-19. Interestingly, the receptors of those aforementioned cytokines were highly expressed on human pancreatic islets. An increase in peripheral unmethylated INS DNA, a marker of cell death, was evident in several patients with COVID-19. Pathology of the pancreas from deceased hyperglycemic patients who had COVID-19 revealed mild lymphocytic infiltration of pancreatic islets and pancreatic lymph nodes. Moreover, SARS-CoV-2-specific viral RNA, along with the presence of several immature insulin granules or proinsulin, was detected in postmortem pancreatic tissues, suggestive of ß-cell-altered proinsulin processing, as well as ß-cell degeneration and hyperstimulation. These data demonstrate that SARS-CoV-2 may negatively affect human pancreatic islet function and survival by creating inflammatory conditions, possibly with a direct tropism, which may in turn lead to metabolic abnormalities observed in patients with COVID-19.


Subject(s)
COVID-19 , Islets of Langerhans , COVID-19/complications , Cytokines/metabolism , Humans , Hyperglycemia/virology , Islets of Langerhans/metabolism , Islets of Langerhans/virology , Proinsulin/metabolism , SARS-CoV-2
3.
Nat Metab ; 3(6): 774-785, 2021 06.
Article in English | MEDLINE | ID: covidwho-1243313

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) are reported to have a greater prevalence of hyperglycaemia. Cytokine release as a consequence of severe acute respiratory syndrome coronavirus 2 infection may precipitate the onset of metabolic alterations by affecting glucose homeostasis. Here we describe abnormalities in glycometabolic control, insulin resistance and beta cell function in patients with COVID-19 without any pre-existing history or diagnosis of diabetes, and document glycaemic abnormalities in recovered patients 2 months after onset of disease. In a cohort of 551 patients hospitalized for COVID-19 in Italy, we found that 46% of patients were hyperglycaemic, whereas 27% were normoglycaemic. Using clinical assays and continuous glucose monitoring in a subset of patients, we detected altered glycometabolic control, with insulin resistance and an abnormal cytokine profile, even in normoglycaemic patients. Glycaemic abnormalities can be detected for at least 2 months in patients who recovered from COVID-19. Our data demonstrate that COVID-19 is associated with aberrant glycometabolic control, which can persist even after recovery, suggesting that further investigation of metabolic abnormalities in the context of long COVID is warranted.


Subject(s)
Blood Glucose/metabolism , COVID-19/blood , Hyperglycemia/metabolism , COVID-19/complications , COVID-19/virology , Cohort Studies , Humans , Hyperglycemia/complications , Insulin Resistance , Insulin-Secreting Cells/pathology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL